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SUMMARY 

A variant of floating-point arithmetic is described which permits the easy realization 
of indefinite precision within the framework of the floating-point arithmetic. The prin- 
cipal difference of this arithmetic involves the details of floating-point addition. It has 
been realized in hardware and also simulated. It is proposed that this feature be con- 
sidered as an option or mode for future computers. 

INTRODUCTION 

In 1960, the Lewis Research Center was faced with the decision of whether to up- 
grade the capability of an existing UNIVAC 1103 computer, or to replace it in order to 
keep pace with a growing workload of the evaluation of experimental research data, Be- 
cause at that time there were no obvious candidate machines for replacement, it was de- 
cided to add a transistorized floating-point arithmetic unit to the UNIVAC. 

length data, experience, especially with the solution of problems in least squares had 
shown that the relatively short fraction length (27 bits) of most floating-point arithmetics 
was inadequate. Most problems of this type had been successfully processed with simu- 
lated floating-point arithmetic using a 35 bit fraction and separate exponent although 
even this precision was occasionally marginal. Because the basic computer had only 
4096 words of core store, it was decided to implement the 35 bit form and even higher 
precisions directly in the hardware. It proved to be very easy to achieve high precision 
integer or fractional arithmetic within the framework of the hardwarized floating-point 
arithmetic. 

Until quite recently, there had been little interest in precision of arithmetic. This 
situation has been dramatically changed as a result of the severe difficulty of problem 
solution in the floating-point arithmetic of the 32 bit word length computers. This dif- 

Although the major workload of the 1103 computer dealt with relatively short word- 



ficulty led to several investigations of the precision of computation (mostly unpublished) 
with the resulting realization that users had rather generally been more optimistic about 
the quality of the results of computation than was justified. Among other results of 
these studies is a growing interest in extended precision arithmetic. Because of this 
change in  interest, it has been decided to describe the pertinent features of the floating- 
point hardware and to show how easily extended precision arithmetic can be achieved. 
We may note that almost the same arithmetic has been coded in an 18 bit computer which 
did not have floating-point hardware. 

PROPERTIES OF THE ARITHMETIC 

No attempt will be made to describe all of the features of the hardware. Many of 
them were designed to reduce the demands on core store which is now a somewhat less 
pressing problem. They are largely irrelevant to this discussion in any case. 

Each arithmetic operation produced two results with a separate exponent for each part. 
The principal result was always returned to R and a secondary result was returned to 
OP. As will  be noted, the identity of these registers could be logically interchanged. 
The actual arithmetic was performed in one 74-bit arithmetic register with an additional 
37-bit transfer register. 

DIVIDE, REVERSE DIVIDE, STORE(R), and STORE INTERCHANGE, which caused the 
storage of R followed by interchange of the identity of R and OP. In addition to the 
ability to address the general store, it was also possible to address the internal storage 
registers except for the operation STORE. 

The instruction code also contained bits which permitted the change of the sign of an 
operand read from store or  to control whether the result of any operation was truncated 
o r  rounded. When rounding was  elected, it was a postnormalized rounding. In every 
operation an exact residue of the computation was stored in OP. The residue was ad- 
justed to compensate for rounding if rounding increased the value of the more significant 
part of the result. It is crucial to the achievement of multiple precision arithmetic that 
the residue be exact for every operation except division. When the other multiple pre- 
cision operations are correctly executed, multiple precision division is essentially 
trivial. 

The actual hardware performed only one form of arithmetic on numbers with a long 
biased exponent part and signed 35 bit fractions part. The actual exponent length was 
30 bits and what is adequately long cannot be reliably specified. There is no adequately 
long exponent to permit the arbitrary approximation of zero or infinity which is a part 

The principle hardware consisted of two storage registers designated as R and OP. 

The relevant operations consisted of LOAD, LOAD NORMALIZE, ADD, MULTIPLY, 
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of the theory of mathematics. It is suggested that the minimum desirable length ranges 
from 12 to 18 bits. 

We note first that although a residue was always formed and sto 
due was destroyed by reading the next operand into OP for any sub 
the execution of multiple precision arithmetic requires that the content of OP be stored 
before any further operation is initiated. In the execution of the usually coded sequences 
of instructions the residue was not required. 

The operation of multiplication was trivial and was different from the methods com- 
monly employed only to the extent that the results were always normalized. Because 
rounding might cause arithmetic overflow the exponent part of the residue was computed 
first and stored. If the 36th bit of the product was a "1" and rounding were ordered, 
one unit was added to the 35th bit position. Two bits were included in the register to 
separately provide a sign and an overflow position. In any case, if roundup occurred, 
the low order part of the result was complemented (2's complement) and its sign set 
opposite to the principal result. In any case it was shifted one bit to the right and the 
result stored as the fraction of the residue in OP. 

Finally, the exponent of the principal part was computed. If arithmetic overflow 
occurred because of rounding, the principal exponent was increased by one count and the 
principal result shifted right one bit. The adjusted exponent and fraction with a sign was 
then stored in R. 

esi- 

The method of performing addition differed from conventional practice in a crucial 
way. The first detailed operation was to subtract the exponent of the addend (in OP) 
from the exponent of the augend (in R). If this was negative, the register identity was 
interchanged and the exponent difference complemented. If the exponent difference then 
exceeded the fraction length, (35) the operation terminated. Otherwise, the fraction 
of OP was loaded into the arithmetic unit and shifted right to align the fractional parts. 
These were then added algebraically and the result and sign complemented if necessary. 
Arithmetic overflow could occur and if it did, the entire result was shifted one bit right 
and the exponent adjusted. The final steps were then performed as in multiplication. 

Division was also somewhat unusual in that it was desired to form a rounded quotient 
if so specified and to compute a correct residue. We note that Reverse Division required 
only that the register identity be interchanged prior to an actual division. 

cause the registers were addressable, the option existed to consider the trap condition a 
fault o r  to normalize the divisor and continue. Application-related coding is required to 
effect the decision. 

The dividend fraction was first normalized. Then if the absolute value of the frac- 
tion was less than the absolute value of the fraction of the divisor the dividend shifted left 
by one bit. If rounding had been elected, the absolute value of the divisor fraction was 

In the division operation an unnormalized divisor produced a conditional trap. Be- 
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attached to the dividend, In any case, a 35 bit quotient and remaind 
Finally, if rounding had been elected, the absolute value of the divisor was s 
from the remai 

We may note that in the softwarized version of this arithmetic the remainder is not 
generated because for division it is really not required. We also note that both imple- 
mentations use absolute value and attached sign for the fraction and a biased exponent. 

MULTl PLE PREC IS 10 N 0 PER AT10 NS 

Multiple precision operation depends fundamentally only on three subroutines. One 
provides for the storage of the parts of the entire result. This proves to be convenient 
by the use of array operations but would be even easier if a pushdown stack o r  some form 
of variable length dynamic storage allocation were available. The latter seems preferable 
but is not usually at hand. 

to a collection of previously computed and added parts. 

to produce a result which depends only on the value and length of the multiple part 
floating-point result and removes the possibility of nonunique representation. 

The second subroutine provides for the addition of individual floating point numbers 

The third is a 'Tstandardizery subroutine which uses the second of these subroutines 

The first subroutine deserves no detailed account. 
For the addition of two numbers, after a work space is initially set to zero the sum 

of two multiple part numbers consists merely in delivering their individual parts in 
sequence to the addition subroutine. 

Multiplication requires that for two numbers that are respectively N and M words 
long, the 2NM separate pieces be delivered to the second subroutine. 

Division is executed as a simple form of Fourier division. The dividend is placed 
in a buffer space preferably in standard form. A partial quotient Q1 is then formed 
and stored in a reference store. The product of Q1 times all elements of the divisor 
is then subtracted from the initial dividend using the second subroutine. As many partial 

are desired or permi by a repetition of this algorithm. Note 
ily generate a f i  length quotient so that a limitation on 

e remainder were available in the division operation, some simplification is 
possible if following each division step the dividend element were replaced by the re- 

ine merely acts like a dummy arithmetic operation which 
or general addition routine and as the process goes on, 

usually in several steps checks to determine whether the result is in standard form. 
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It is apparent that the second o r  generalized addition routine is the important routine 
and performs most of the work. It's structure, arrived at after considerable investiga- 
tion in the hardware-software design period proves to be somewhat different than had at  
first been expected. 

A critical part of the objective is that the subroutine will ultimately produce a 
standardized result. A standardized result is defined to be one in which, of the several 
floating-point results which make up a single multiple-precision number the absolute 
values of the first (leftmost, if you wish) is the largest and that the absolute values of 
the parts decrease monotonically as successive words a r e  encountered. This is a pos- 
sible definition for any number base. In a binary implementation .it is desirable that the 
exponent parts of successive words differ by at least n + 1 where n is the fraction 
length. In the implemented cases the minimum difference is 36. 

In a nonbinary computer the best that can be guaranteed is that the difference is 
equal to the number of digits of the fractional part. This leads to a different condition 
for the addition operation in that the addition of two floating-point words is not attempted 
if the difference of the exponents exceeds the fractional word length or  if the difference 
of exponents equals the fractional word length and the signs of the parts are alike. 

For the purpose of definition, a result can also be said to be standardized if the 
individual floating-point words a r e  disjoint in the sense that if they were added, no actual 
addition is required. 

What proved to be somewhat surprising is that the feasible process started by adding 
a new element of the final sum to the most significant part of an existing multiple word 
number even though the new element had a very small value. If its value relatively is 
quite large, then the ordering aspect of the addition algorithm replaced the previously 
most significant word by a different value with a residue which was now added to the next 
word in the augend file and so on until all of the data were exhausted. The most conven- 
ient control of the sequence was generated by replacing each word in the augend file by 
zero as it is read from store. If the space allocated to the augend ends with a floating- 
point zero then the encounter of a zero-valued word is a sentinal that the present step of 
addition is complete. 

Attention is called to the fact that in reducing the initial dividend by subtracting the 
product of the first quotient and the entire divisor, it is to be expected that first sub- 
traction will produce a quite small result. If the initial dividend was standardized, then 
subtraction tends to move a word with the most significant part of the adjusted dividend 
into the proper position for a further division step. 

cancellation of value. Another process is the multiplication of a matrix by its approxi- 
mate inverse. Here, if the inverse is a reasonable one, all the diagonal elements of the 
product matrix tend toward unity and all the off -diagonal elements tend toward zero. This 

Multiple precision division is one process in which there is a tendency for strong 
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trend toward zero is a property of any iterative method for the r 

Attention is called to a few further details of the addition a1 
operands of any step are of opposite sign, it will frequently hap 
sum is only one fraction long. In this case, the residue is zer 
stored the next word of the augend should be added. In any case, the first word stored 
is placed in the leftmost position of the augend file and successive nonzero words in 
successive positions . 

It is important to note that despite the tendency of the addition algorithm to reduce 
the total number of words required, the count of total number is the number initially in 
the augend file plus one for the new value which is being added. This may increase the 
number of words in the file so that the assigned file length may be exceeded. This 
usually requires that the least significant word be discarded. 

It may have been noticed that the addition operation tends to move the more signifi- 
cant values toward the leftmost (first) part of the augend file. Because of this property 
the simplest standardization subroutine merely repeatedly adds zero to the augend file 
until the results are appropriately disjoint. 

One important observation concerning this method of executing multiple precision 
arithmetic is that the successive parts a re  usually not all of the same sign, This is 
unavoidable if only one fraction length is used in the elementary floating-point addition. 
Advantage of this property is usable in a binary computer to increase the average effective 
length of a fraction. Even without rounding the minimum effective length of the succes- 
sive floating-point words is one bit more than the nominal hardware length. With round- 
ing the average effective length is .one additional bit. 

in any case, the gain in apparent length is not adequate to compensate for the many times 
repeated exponent parts. The advantage of the method is that it uses only a basic 
floating-point arithmetic if the floating-point addition is properly designed. 

integers and the partial quotients accepted in division a re  constrained to be integers, 
the same algorithm is quite adequate to perform all of the ordinary operations of integer 
or rational fraction arithmetic. 

r set of equations. 

This property does not carry over to higher values of the base such as 8 or 16 and, 

One additional feature of the system is that if the initial values of the operands are 

CONCLUDING REMARKS 

The hardware floating-point arithmetic unit constructed at the Lewis Research Cen- 
equivalent simulations of the hardware) have made the realization of multiple 

ion floating-point arithmetic extremely easy. The principal difference between 
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this hardware and several others is the treatment of floating-point addition when the 
difference of the exponent parts of the augend and addend exceed the number of charac- 
ters of the standard computer word. 

It is suggested that the NASA addition algorithm either as the only method of addi- 
tion o r  as optional mode of addition be considered as a design characteristic of future 
computers. 
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